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Agriculture and Solar Farms: Heterogeneous Preferences Among Local Public 

Officials, the General Population, Landowners and Non-Landowners 

 

Abstract 

Utility-scale solar development has raised considerable local land use concerns. We investigate 

stakeholders’ valuations for solar project attributes, focusing on land use trade-offs with a choice 

experiment in U.S. state of Iowa that incorporates information treatments and choice uncertainty. 

Results indicate substantial heterogeneity, with public officials and landowners valuing high-

quality farmland significantly more than the general population and non-landowners. However, 

information treatments do not significantly affect attribute tradeoffs, though they influence overall 

support for solar. Rankings of land use challenges vary with respondents’ farming backgrounds 

and solar experiences and interests. Findings highlight stakeholder-specific preferences shaping 

local acceptance of solar projects. 

Keywords: Agricultural land use, Community acceptance, Information treatments, Land quality, 

Stakeholders, Utility-scale solar energy, Willingness to pay 
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1. Introduction 

Solar energy systems produce less greenhouse gases during their life cycle than fossil fuel energy 

sources (NREL, 2012), representing a low-carbon renewable alternative to fossil fuels in the 

electricity production industry. With cost advantages in electricity generation and environmental 

gains (Lazard, 2020), the adoption of utility-scale solar photovoltaic (PV) energy, commonly 

defined as PV projects with greater than one megawatt (MW) capacity, is regarded as one of the 

fastest growing approaches to cutting carbon emissions and transitioning the United States towards 

a decarbonized power grid and a clean energy future (Solar Energy Industries Association).  

The fast growth of solar has attracted considerable attention to its land use implications in the 

United States (Trainor et al., 2016). Given the current prevailing technology, one MW of PV solar 

capacity takes about 4-6 acres of land (Bolinger and Bolinger, 2022). Even though the National 

Renewable Energy Laboratory (NREL) estimates that the entire U.S. could be powered by utility-

scale solar panels, occupying merely 0.6% of the country’s land, the development of such projects 

and the associated land use issues are inherently localized (Majumdar and Pasqualetti, 2019; Suh 

and Brownson, 2016). According to a report from the USDA’s Economic Research Service (ERS), 

over 90% of solar projects in the U.S. between 2009 and 2020 were located in rural areas, with 

more than 70% of these projects sited on agricultural land (Maguire et al., 2024).  

The development of solar on farmland creates direct competition for land resources, 

potentially affecting both food production capacity and rural economies. As suggested by 

Maddison et al. (2023), large-scale solar farms have disamenity impacts on nearby property values. 

Elmallah et al. (2023) and Gaur and Lang (2023) provide further evidence of declining property 

values for solar developments on agricultural land and for rural homes. Therefore, despite its 

advantages, utility-scale solar development has caused concerns among communities about the 
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localized impacts, especially land-use conflicts with agricultural production (Crawford et al., 2022; 

Gaur et al., 2023). For example, Iowa lawmakers proposed a bill in 2023 to prohibit the 

construction of utility-scale solar panels on land suitable for farming, limiting options for 

landowners and hindering the growth of solar power (McCulluough, 2023).  

The localized impacts of utility-scale solar projects are crucial factors underlying individual 

preferences and community acceptance (Hanger et al., 2016; Majumdar and Pasqualetti, 2019; 

Roddis et al., 2018). One key attribute addressed in previous studies was the choice of project 

siting. Gaur et al. (2023) utilized a choice experiment survey in Rhode Island to estimate the trade-

offs people are willing to make for a set of siting attributes. They found that residents were willing 

to pay $13–$49 more in monthly utility bills to avoid locating such projects on agricultural and 

forestry landscapes. Moreover, studies by Larson and Krannich (2016) in Utah and Carlisle et al. 

(2016) across six southern Californian counties observed reduced support among residents for 

projects situated in proximity to residential areas, wildlife migration routes, or breeding grounds. 

Nilson and Stedman (2022) suggested that support for large-scale solar development in New York 

was associated with potential economic opportunities, especially considering the hardships facing 

the agricultural communities in their study. Similarly, Pascaris et al. (2022) found that survey 

respondents in Lubbock County, Texas, and Houghton County, Michigan, favored projects 

offering economic benefits to farmers and the local community. Crawford et al. (2022) found that 

the most common concern in Michigan was the potential devaluation of residential property. 

Various perceived risks for electricity supply, including intermittency, negative impacts on rural 

and tribal culture, and community energy sovereignty, as well as human health, were also found 

to be important factors (Boudet, 2019; Mulvaney, 2017; Nilson and Stedman, 2022; Roddis et al., 

2020). However, studies concerning the formal assessment of the trade-offs between localized 
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agricultural land-use impacts of utility-scale solar projects and their associated economic and 

environmental implications are still limited in the existing literature. 

In contrast, a large literature investigates the role of different factors influencing individuals’ 

preferences for solar energy systems, including message-framing strategies in advertisements 

(Wolske et al., 2018), financial incentives (Crago and Chernyakhovskiy, 2017), dissemination of 

solar energy information (Palm and Lantz, 2020), and social norms and environmental concerns 

(Kalkbrenner and Roosen, 2016; Wolske et al., 2017). These studies primarily focus on residential 

solar energy. Furthermore, a handful of qualitative studies based on interviews outline the 

challenges hindering solar energy adoption at both residential and utility scales, including 

information gaps regarding the advantages and benefits of solar power, high upfront investment 

costs, and land availability (Burke et al., 2019; Faiers and Neame, 2006; Frate and Brannstrom, 

2017; Jager, 2006; Rai and Sigrin, 2013; Schelly et al., 2021). Understanding how underlying 

factors and the dissemination of information influence preferences for utility-scale solar projects 

provides valuable insights into their acceptance—or lack thereof—within local communities.  

The objective of this study is to quantify the trade-offs of agricultural land of different qualities 

and other factors associated with utility-scale solar systems, such as environmental outcomes and 

economic consequences, and examine how agricultural land is valued relative to other attributes. 

By disentangling the intricacies of these trade-offs, our research seeks to help outline the potential 

factors shaping preferences and decisions in the context of utility-scale solar project development. 

More importantly, we aim to explore potential heterogeneity in how different stakeholder groups 

– public officials, the general population, landowners, and nonlandowners – value the attributes 

related to utility-scale solar projects and the associated trade-offs, recognizing their diverse 

perspectives on land use and solar development. We also aim to study how preferences for solar 
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projects are affected by different information treatments, given the growing controversy and 

differing narratives surrounding utility-scale solar projects and their land use.  

To answer the research questions, we conducted a survey experiment in 2023 that targeted 

both public officials and the general population in the U.S. state of Iowa. Iowa has experienced 

rapid growth in utility-scale solar energy development in recent years. From 2016 to 2023, the 

state commissioned 17 utility-scale solar PV power plants, aggregating its total capacity from 3.3 

MW to 262.5 MW (EIA, 2024) – a trend expected to continue, given that over 3,804 MW of 

additional development is in queue with Midcontinent Independent System Operator (MISO, 

2025). With approximately 85% of its land dedicated to farming, Iowa is a major agricultural state, 

representative of the broader Midwest U.S. in terms of agricultural importance to local economies, 

land-use patterns, and solar energy development. This makes Iowa a particularly relevant region 

for studying the trade-offs related to agricultural land use and utility-scale solar energy 

development. The majority (over 63%) of solar projects in the U.S. between 2009 and 2020 were 

sited on agricultural land (Maguire et al., 2024). Given these statistics, understanding solar 

development in agricultural states like Iowa is crucial for informing renewable energy policy and 

implementation strategies across the Midwest and the nation.  

Our results show all stakeholder groups value agricultural land use, but the valuations differ 

among different stakeholder groups. Specifically, public officials demand much higher monthly 

compensations in terms of savings in electricity bills ($48.73) than the general public demands 

($14.81). Landowners also require significantly more ($49.60) than non-landowners ($17.13) to 

offset the loss of highly productive farmland for solar projects relative to less productive farmland. 

To put these numbers in perspective, we note that in 2022, the annual average cash rent for 

farmland in Iowa was $256/acre (ISU Extension 2022) and the average monthly electricity bill 
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was $110 (EIA, 2022). We also observe notable disparities in trade-offs between agricultural land 

use and other attributes across stakeholders. However, the type of information presented does not 

statistically significantly affect individual preferences concerning land uses. An analysis of the 

respondents’ rankings of land use as a challenge for utility-scale solar projects and a latent class 

analysis suggest that respondents’ farm backgrounds (or lack thereof), knowledge, and personal 

experiences related to solar energy are likely potential drivers of the preference heterogeneity.  

This paper contributes to the existing literature in three ways. First, we surveyed two distinct 

groups, public officials and the general population, while also analyzing differences between 

landowners and non-landowners, to explicitly evaluate heterogeneous preferences for siting 

utility-scale solar projects on farmland of different qualities. Existing studies have shown that local 

communities play a critical role in utility-scale solar development (e.g., Hanger et al., 2016; 

Majumdar and Pasqualetti, 2019; Roddis et al., 2018). However, these studies have predominantly 

focused on the general public. There is a lack of perspectives of public officials, who may prioritize 

specific attributes differently than the general population, due to the distinct roles and 

responsibilities they have in their communities. Public officials’ perspectives are crucial because 

of their decision-making power and the broader and more lasting impacts their decisions have on 

communities (Bohner and Dickel, 2011; Macawile and Su, 2009). In addition, existing research 

on renewable energy perceptions (e.g., Delicado et al., 2016; Rogers et al., 2008) often focuses on 

the community as a whole and overlooks the differences between landowners and nonlandowners, 

who may have diverging priorities based on their proximity to and economic involvement in land-

use decisions (Mills et al., 2019; Musall and Kuik, 2011; Roddis et al., 2018). This study addresses 

this gap by encompassing the perspectives of public officials vs. the general population and 

landowners vs. non-landowners, allowing for an understanding of how different stakeholder 
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groups value and prioritize various aspects of utility-scale solar projects and the associated trade-

offs, thereby informing the design of more effective deployment strategies at the local level.  

Second, we provide quantitative estimates of the trade-offs among various aspects of localized 

impacts specific to utility-scale solar energy, with primary data collection, and we analyze how 

different information treatments affect these trade-offs. While previous studies have investigated 

the determinants of community acceptance and factors influencing individual preferences (e.g., 

Chen et al., 2025; Majumdar and Pasqualetti, 2019; Nilson and Stedman, 2022; Roddis et al., 2020; 

Roddis et al., 2018), there is little quantitative analysis on how local communities value different 

attributes of such projects and the impact of each attribute in shaping individual preferences and 

support behaviors. We contribute to the existing literature and policy discussions with more 

quantitative insights about the value of utility-scale solar projects to local communities, using non-

market valuation techniques that can incorporate environmental and behavioral drivers underlying 

people’s preferences over different attributes. Furthermore, as land use for solar projects becomes 

a controversial topic, there are various information sources that emphasize different effects, some 

positive and some less favorable. The literature has shown that negative, positive, and peer 

information can influence preferences differently (Allcott and Knittel, 2019; Noll et al., 2014; Sias 

et al., 2023). We explore how preferences for solar projects are affected by different information 

treatments. Our study aims to inform debates about the trade-offs related to land uses of different 

quality and utility-scale solar at the local community level and to help inform policymaking for 

future solar development. 

Third, our discrete choice experiment (DCE) incorporates respondents’ degrees of uncertainty 

and information treatments, which enables us to derive more accurate WTP estimates. The 

fundamental assumption of the DCE is that respondents accurately know their preferences and can 
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make precise choices.  However, in reality, the assumption may be violated, potentially leading to 

biased inferences due to respondents’ uncertainty regarding the utility derived from different 

alternatives (Beck et al., 2016; Ku et al., 2017; Loomis, 2014). Ku and Wu (2018) demonstrate 

that the identified low-uncertainty respondents are notably consistent in their preferences. To 

reflect a more realistic setting with choice uncertainty, we follow the literature (Choi et al., 2018; 

Hofstede et al., 2014; Ku and Wu, 2018; Serenari et al., 2015) to assess how respondents’ 

uncertainty affects WTP estimates. Consistent with existing literature (e.g., Ku and Wu, 2018; 

Olsen et al., 2011), we find preference inconsistency between highly certain and uncertain 

responses, and the exclusion of highly uncertain responses improves model fitness and the 

accuracy of WTP estimates.  To the best of our knowledge, there are no other studies that 

incorporate this aspect into stated preference analysis regarding community preferences for utility-

scale solar projects.  

The rest of this paper is organized as follows. Section 2 details the design and implementation 

of the survey and experiments. Section 3 describes the empirical methodology. Section 4 presents 

the results, and Section 5 concludes. 

2. Data and methods 

To study local land use issues related to utility-scale solar projects, we design a survey 

questionnaire to directly collect individual- and community-level data that are not available 

otherwise. The survey questionnaire (included in Appendix C) incorporates six sections. Besides 

the discrete choice experiment that incorporates information treatments, we collect data on 

respondents’ knowledge of utility-scale solar energy, their perceptions and attitudes towards it, the 

electricity profiles of their communities, and basic demographic information through different 



 
8 

sections. Our empirical analyses are based on these data. 

2.1. Discrete choice experiment with uncertainty levels 

We design a discrete choice experiment to assess how local communities value various attributes 

related to utility-scale solar projects. After extensive discussion with extension and outreach 

specialists 1 , survey experts, and local officials (including county supervisors, city council 

members, and zoning and planning professionals), we choose four attributes from a set of local 

impacts regarding utility-scale solar, aiming to achieve our research goal, while minimizing the 

number of choices required for empirical estimation. As presented in Table 1, the four attributes 

we consider and their corresponding levels are: (i) expected carbon emission reduction relative to 

coal-fired power plants at 85% and 95%2; (ii) expected annual lease payment to landowners of 2, 

4, and 6 times prevailing cash rent3; (iii) expected savings on the monthly electricity bill for the 

household of $5, $25, and $404; and (iv) land quality of the occupied farmland categorized as low, 

medium, and high based on the measure of corn suitability rating 2 (CSR2)5. 

The factorial design yields a total of  2 × 3 × 3 × 3 = 54 attribute combinations. To reduce 

the number of choices each participant has to make, we utilize data from 37 respondents in pilot 

testing as prior information to conduct a D-optimal design 6 , aiming to eliminate dominated 

alternatives in the design of choice sets. This process results in 12 choice scenarios (tasks), 

producing a D-efficiency of 0.95. The 12 choice scenarios are divided into two blocks, and 

participants are randomly assigned to one of the two survey blocks, each containing six scenarios. 

In each scenario, we present two potential plans for a typical medium-sized solar PV project (i.e., 

50 MW of nameplate capacity7) that are under consideration within a local community; the two 

plans are identical except for variations in attribute levels. Participants are asked to report which 

plans they were more likely to support in their communities. Following Herriges et al. (2010), 
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Vossler and Evans (2009), Vossler and Watson (2013), and Vossler et al. (2012) for ensuring 

consequentiality and incentivizing respondents to reveal their true preferences, we emphasize in 

the instructions to respondents that their choices are critical to decision-makers considering solar 

development policies in their regions and would inform the design of land use regulations serving 

local communities.8 To reduce the risk of protest responses that occur with an explicit “opt-out” 

option, participants are asked to make a choice between two proposed plans without a “no choice” 

option. However, we ask participants to state the extent of certainty regarding their choice 

following each choice scenario. Such an approach helps to mitigate hypothetical bias and obtain 

more accurate WTP estimates (Choi et al., 2018; Ku and Wu, 2018; Loomis, 2014). An example 

choice scenario is presented in Figure A.1. 

2.2. Information treatment experiment 

Land use for solar projects has become a controversial topic, frequently making headlines in news 

outlets and other information sources, which might highlight either positive or negative effects. 

Positive coverage often emphasizes the potential to reduce carbon emissions (Rocky Mountain 

Institute, 2021), create jobs (Reuters, 2024), and generate tax revenues (Arevon Energy, 2024), 

whereas negative reporting usually highlights the large land requirements displacing prime 

farmland (Farm Progress, 2022). While the economics literature (e.g., Allcott and Knittel, 2019; 

Sias et al., 2023; Noll et al., 2014) shows that negative, positive, and peer information can influence 

preferences differently, less is known about how such information affects preferences and local 

trade-offs between land use and other attributes specific to utility-scale solar development. 

We conduct an information treatment experiment in the questionnaire, which is designed with 

an emphasis on different categories of information: the control group receives no information, one 

category focuses on peer information related to peers’ adoption of regulations for utility-scale solar 
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projects, and the remaining two categories offer information highlighting either positive or 

negative effects of deploying utility-scale solar projects within local communities. Participants are 

randomly assigned to one of the four versions of the questionnaire, each with one category of 

information. The descriptions used for the information treatment are provided in Table A.1. To 

ensure respondents carefully read the provided information, we include validation questions 

immediately after the information content. Participants are informed that the answers to these 

validation questions can be found in the preceding text and that they would be excluded from our 

study and would not receive compensation if they failed to answer them correctly in three attempts. 

Our final sample size of 868, consisting of 204 to 230 observations in each of the four groups, 

satisfies the minimum requirement of sixty-four subjects in each group to detect one-half of a 

standard deviation change in the outcome variable with a power of 0.80 at the 0.05 significance 

level (Cohen, 2013). 

2.3. Survey implementation 

Our study focuses on Iowa, USA, targeting both public officials and the general population. After 

obtaining human subjects’ approval from the institutional review board at Iowa State University, 

we conducted a pilot survey and held multiple consultations and discussions with extension staff 

and survey experts to refine our survey questionnaire. To enhance responses from public officials, 

we implemented the survey in a mixed mode, combining the use of the online Qualtrics platform 

with a traditional mail-based approach in data collection.  

We compiled a comprehensive list of 599 elected and appointed officials across Iowa’s 99 

counties, including County Supervisors, Staff members, and Zoning and Planning Board members. 

Contact information was sourced from the Iowa State Association of Counties (ISAC) Directory. 

Our multi-phase approach began with email invitations in April 2023, where each recipient 
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received a unique link and access code to the online survey, followed by reminder emails and 

postcard invitations with QR codes for non-respondents. To increase participation, we leveraged 

the ISAC magazine, the Iowa League of Cities member newsletter, and relevant regional 

conferences. In July, we mailed paper surveys to remaining non-respondents along with a prepaid 

and pre-addressed return envelope, followed by reminder postcards. We offered public officials a 

$30 e-gift card as compensation for their time in completing the survey questionnaire. However, 

they could decline to receive the e-gift card by not leaving an email address for any reason (e.g., 

state regulations barring public officials from receiving such compensation). Overall, we received 

a total of 182 responses from public officials, with 57 returned physical copies of the survey and 

125 obtained through the online mode. The regional distribution of the responses is shown in 

Figure 1. 

The general population survey was executed exclusively via Qualtrics from July 15 to August 

15, 2023. It was administered via Dynata9, a well-known market research company, to facilitate 

participant recruitment and establish a sample that was representative and balanced across regions 

and demographics within the state. Dynata was responsible for survey compensation, which 

included a combination of cash (from $5 to $10) and other means of rewards. Of 1,522 

invitations10, we received 686 completed responses, representing a 45.1% response rate. Figure 1 

shows the number of responses across regions, closely reflecting the population distribution across 

regions in Iowa. 

3. Empirical strategy 

Our empirical strategy consists of three components. In this section, we first present the discrete 

choice model we apply to estimate preferences for utility-scale solar project attributes. A latent 
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class analysis is then employed to identify clusters of respondents with heterogeneous preference 

patterns. Additionally, we investigate how respondents differ in their rating of land use as a 

challenge to utility-scale solar development based on an ordered logit model. 

3.1. Attribute-based discrete choice model 

We apply an attribute-based discrete choice model under the framework of random utility 

maximization (RUM) (McFadden et al., 1973; Freeman III et al., 2014). In a choice experiment 

setting, respondents are asked to choose between two potential plans for utility-scale solar projects 

within their communities, characterized by a set of attributes. The RUM model posits that an 

individual chooses the alternative that yields the highest expected utility among all alternatives in 

each given choice scenario. 

Our analysis utilizes a random parameter logit (RPL) model (also called mixed logit), which 

accommodates preference heterogeneity and relaxes the Independence of Irrelevant Alternatives 

assumption 11  required by the standard conditional logit model. 12  The RPL model allows for 

random taste variations, unrestricted substitution patterns, and correlation in unobserved factors 

over time (Train, 2009). For the RPL model, the utility an individual i obtains from choosing 

alternative j for choice sequence (i.e., choice scenario) t is: 

 (1) 

where 𝑉𝑖𝑗𝑡 is the systematic component of utility, which is a function of observable attributes of 

the alternative j for the sequence t, 𝑋𝑖𝑗𝑡 ; 𝜷𝒊  is the individual-specific random coefficients on 

observed attributes of alternative j to capture preference heterogeneity; and 𝜀𝑖𝑗𝑡 is the standard 

error term that captures the unobserved, stochastic element of the utility. 

The probability that individual i will select alternative j (𝑦𝑖𝑡 = 𝑗) from a set of J alternatives 
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is given by 

 

(2) 

Assuming that the error terms 𝜀𝑖𝑗𝑡  are independently and identically drawn from a type I 

extreme value distribution (McFadden et al., 1973), then we can obtain 

 
(3) 

In non-market valuation studies, the inclusion of an opt-out (i.e., neither) alternative is 

commonly adopted. By incorporating an opt-out alternative, the model can capture the value 

associated with accepting or rejecting the proposed changes to specific attributes (Hensher et al., 

2005; Veldwijk et al., 2014). However, studies have also shown that an opt-out alternative may 

lead to inattentive responses, with some participants always opting out when available (Krosnick, 

1991; Sandorf, 2019), resulting in limited preference information for analysis. Nonetheless, 

Carlsson et al. (2007) found no evidence that respondents who select the opt-out option are 

different from those who made trade-offs among attributes. Our study specifically focuses on the 

trade-offs between different project attributes when solar development is assumed to occur rather 

than on whether a solar project will be developed (Veldwijk et al., 2014). Hence, to elicit more 

preference information, we employ a forced choice format; that is, participants are asked to make 

a choice between two options and are not provided with a “no choice” option. Furthermore, our 

design realistically captures the choice setting where a community has decided to have a utility-

scale solar project and is considering where the project should be located. However, respondents 

may not accurately know their preferences to make precise choices among presented alternatives, 

thereby challenging the fundamental assumption of the DCE. Thus, we ask respondents to report 
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their certainty levels for each choice they make so that we can examine the implications of choice 

uncertainty. Following the recommendations in existing literature (e.g., Hofstede et al., 2014; Choi 

et al., 2018; Ku and Wu, 2018; Serenari et al., 2015), responses with a high level of uncertainty 

(i.e., certainty level = 1 or 2 out of a scale of 5 in the DCE tasks) are excluded from our analysis, 

as such responses provide no more information than random guesses to reflect true preference 

(Vossler et al., 2012). For robustness check, we assess the effects of respondents’ choice 

uncertainty on WTP estimates in Subsection 4.4.1. 

The attribute vector ( 𝑋𝑖𝑗𝑡 ) consists of one of two levels of carbon emission reduction 

(𝐶𝑎𝑟𝑏𝑜𝑛𝑗𝑡), one of three levels of lease payments to landowners (𝐿𝑒𝑎𝑠𝑒𝑗𝑡), one of three levels of 

savings on monthly electricity bills (𝐵𝑖𝑙𝑙𝑗𝑡), and one of three levels of land quality for the occupied 

farmland (𝐹𝑎𝑟𝑚𝑙𝑎𝑛𝑑𝑗𝑡) (refer to Table 1 for more details). For the RPL model, 𝑉𝑖𝑗𝑡 in Eq. (1) is 

specified as: 

 
(4) 

where 𝐶𝑎𝑟𝑏𝑜𝑛95𝑖𝑗𝑡 is an indicator, taking the value of one for carbon emission reduction of 95% 

relative to coal-fired plants; 𝐹𝑎𝑟𝑚𝑙𝑎𝑛𝑑70𝑖𝑗𝑡 and 𝐹𝑎𝑟𝑚𝑙𝑎𝑛𝑑85𝑖𝑗𝑡 are indicators for medium- and 

high-quality farmland, respectively, each taking the value of 1 if the corresponding quality level is 

present; 𝛽𝐶,𝑖 , 𝛽𝐿,𝑖 , 𝛽𝐵,𝑖 , 𝛽𝑀,𝑖 , and 𝛽𝐻,𝑖  are random coefficients, each assumed to be normally 

distributed with means βp and standard deviations 𝜎𝑝, where 𝑝 =  {𝐶, 𝐿, 𝐵, 𝑀, 𝐻}. Carbon emission 

reduction and land quality of the occupied farmland are coded as dummy variables, with the 85% 

reduction in carbon emissions and the low-quality farmland (average CSR2 score of 55) set as the 

baselines for these two variables, respectively. Lease payments to landowners and savings on the 

monthly electricity bills are specified as continuous variables. 13  All attribute coefficients are 

classified as random and normally distributed. This specification is determined through a 
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comparison of model fit statistics. Models with different random coefficient specifications are 

estimated, and the model with all attributes specified as random coefficients results in the lowest 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) values, indicating 

the best model fit. 

Using the estimated random coefficients from Eq. (4), we can derive the marginal WTP 

estimates by dividing the coefficient of a non-monetary attribute, e.g., 𝛽𝐻,𝑖, by the coefficient of 

the monetary attribute, 𝛽𝐵,𝑖, i.e., 
𝛽𝐻,𝑖

𝛽𝐵,𝑖
, a ratio that represents the WTP of locating the solar project 

on high-quality farmland relative to on low-quality farmland. A negative value indicates a 

willingness to accept (WTA) compensation for the associated attribute. The standard errors are 

estimated using the Delta method (Greene, 2003).14 

We further incorporate the interactions between farmland quality and both carbon reduction 

and energy savings in Eq. (4) because we conjecture that the marginal benefits one derives from 

electricity bill savings might differ depending on the quality of farmland that is being used for the 

solar projects or the carbon benefits of the project. We do not consider lease payments to 

landowners for interaction effects because most respondents do not consider such lease payments 

as a significant benefit. The systematic component of utility 𝑉𝑖𝑗𝑡 for the RPL model with these 

interaction terms is specified as: 

 

(5) 

where 𝜌1,𝑖 , 𝜌2,𝑖 i, 𝜌3,𝑖 , and 𝜌4,𝑖  are random coefficients, each is assumed to follow a normal 

distribution with mean 𝜌𝑔 and standard deviation 𝜎𝑔, 𝑔 ∈ {1, 2, 3, 4}. 

3.2. Latent class analysis model 
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To investigate the potential source of preference heterogeneity, we conduct a latent class analysis 

(LCA). The LCA method enables us to identify distinct preference patterns among clusters of 

respondents (Sinha et al., 2021) and has advantages over other classification techniques like cluster 

analysis or k-means clustering, as it is model-based and allows for a mathematical assessment of 

how well the proposed LCA model fits the data (Nylund-Gibson and Choi, 2018). It is plausible 

that individuals with varying levels of knowledge about utility-scale solar energy and different 

personal experiences may evaluate project attributes differently and make trade-offs accordingly. 

Thus, we utilize data on landownership, respondents’ self-rated levels of knowledge of utility-

scale solar energy, the presence of utility-scale solar projects in their counties of residence, and 

their participation or interest in rooftop or community solar projects in determining the class 

assignments. 

In LCA analysis, individuals are assumed to be homogeneous within each class but 

heterogeneous across classes. The between-class regression models the probability of an individual 

belonging to each latent class as a function of individual-level characteristics, typically using a 

multinomial logit model for class membership assignment. The within-class regression uses the 

conditional logit model to estimate the choice model parameters separately for each latent class. 

The probability that individual i chooses alternative j from a set of J alternatives (𝒚𝒊𝒕 = 𝒋), 

conditional on being in class s (Holmes et al., 2017), is: 

 

(6) 

3.3. Examining sources of heterogeneity in farmland valuation 

To further shed light on preference heterogeneities about the main attributes of utility-scale solar 

projects, in our survey, we asked respondents to report their ratings of perceived land use 
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challenges in the development of utility-scale solar within their communities, 

𝐿𝑎𝑛𝑑_𝑢𝑠𝑒_𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑖 . The rating is categorized on a three-point ordinal scale (1 = “not a 

challenge,” 2 = “somewhat a challenge,” 3 = “a significant challenge”). Given the ordinal nature 

of the responses, we use the ordered logit model (McCullagh, 1980)15 to examine factors that affect 

the perception of land use challenges. 

Let 𝐿𝑎𝑛𝑑_𝑢𝑠𝑒_𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑖
∗ denote the unobserved continuous latent variable that determines 

the value of the observed ordinal outcome of 𝐿𝑎𝑛𝑑_𝑢𝑠𝑒_𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑖 . The latent variable 

𝐿𝑎𝑛𝑑_𝑢𝑠𝑒_𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑖
∗ has two unobserved cutoff points, 𝜅1 and 𝜅2, where 𝜅1 < 𝜅2. The ordinal 

logit model is estimated as follows: 

 

(7) 

where 𝑫𝒊 represents the vector of variables for respondent i that explains 𝐿𝑎𝑛𝑑_𝑢𝑠𝑒_𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑖
∗ 

in the population; and 𝝎 is the vector of regression coefficients to be estimated. The log odds 

analyzed in the model are: 

 

(8) 

For parsimony, the latent variable, 𝐿𝑎𝑛𝑑_𝑢𝑠𝑒_𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑖
∗, is specified as follows: 

 
(9) 

where 𝛼 , 𝜔1 , 𝜔2 , 𝜔3 , 𝜆 , and 𝝁  are model parameters; 𝑅𝑜𝑜𝑓𝑖  indicates respondent i’s current 

adoption or intention to adopt rooftop solar; 𝐶𝑜𝑚𝑚𝑖 measures respondent i’s degree of interest in 

participating in a community solar project; 𝑈𝑡𝑖𝑙𝑖 represents the presence of a utility-scale solar 

project within the county where respondent i resides; 𝑀𝑢𝑛𝑖𝑖  indicates whether respondent i’s 

electricity supplier is a municipal utility or a cooperative; vector 𝒁𝒊  is individual-specific 
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demographic and socioeconomic characteristics; and 𝜉𝑖  is the error term, assumed to follow a 

standard logistic distribution, capturing the random disturbance related to the perceived land use 

challenges of respondent i. Table 2  presents summary information of all these variables, which 

are included in Eq. (9) because they represent knowledge attainment and personal experience, and 

may influence individuals’ views on land use challenges. Understanding the effects of these factors 

provides insights into the sources of preference heterogeneity on the land use aspect of utility-scale 

solar projects, helps inform the design of education and outreach programs to address land use 

concerns within local communities, and promotes more solar energy development. 

4. Results 

4.1. Summary statistics of sample data 

We received a total of 868 responses that provided usable information. After filtering out responses 

with missing key information, our choice experiment yields 10,334 usable choices (including those 

with high uncertainty), with 864 unique respondents. Table 2 presents an overview of the sample 

statistics and demographics of survey respondents. Within the general population subset, 53.21% 

of respondents are female, and 46.5% are male, roughly reflecting the female-to-male ratio in Iowa 

(50.1%-49.9%) based on the 2023 U.S. Census Bureau population estimates. 16  Our general 

population subsample’s median age is 47, which aligns with Iowa's adult population (18+), whose 

median age is within the range of 40-49. 17 The median age of public officials in our sample is 50, 

which slightly exceeds the median age range of Iowa’s adult population. Because public officials 

constitute a distinct group, representativeness relative to the broader state population is neither 

expected nor necessary for the purposes of this analysis. The median household income of our 

general population respondents falls within the range of $61,000 to $90,000. In comparison, the 
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reported median household income in Iowa from 2019 to 2023 was $73,147 (in 2023 dollars), 

which aligns with the range observed in our data. Furthermore, educational attainment in our 

sample (98.11% with high school education or above, 44.88% with bachelor’s degrees) compares 

well with Iowa data of age 25+ (93.2% and 30.9% respectively), although our sample is somewhat 

better educated than the average Iowa resident. We conducted formal data analysis and found no 

evidence that the higher share of college-educated respondents in our sample affects the preference 

estimates (results are available upon request). Political affiliation distributions (26.09% Democrat, 

36.01% Republican, 33.24% Independent, 4.66% Other) also closely mirror Iowa's voter 

registration data (29.20%, 32.40%, 35.56%, 2.84%). 18  The aforementioned demographic 

information provides evidence supporting the representativeness of our general population 

subsample in reflecting the broader demographic makeup of Iowa.  

Consistent with another statewide survey conducted by the Tarrance Group in 2022, which 

reported that 68% of Iowa voters supported new solar energy projects when asked directly (BFI, 

2022), our survey indicates that over 70% of respondents express moderate to extreme levels of 

support for their communities hosting a utility-scale solar project. The largest proportion (44.01%) 

shows a moderate degree of support, while 23.50% and 10.14% express strong or extremely strong 

support. Those showing slight support account for 14.29%, while 8.06% indicate non-support. Our 

survey results reveal some different levels of support for utility-scale solar projects across 

respondent groups. On average, public officials in Iowa score 3.02 (on a 5-point scale) in their 

level of support, whereas the general population scores 3.16. However, the difference is not 

statistically significant. On the other hand, we find a statistically significant difference in the level 

of support between landowners and non-landowners.19 Landowners exhibit a relatively lower 

degree of support, with a mean score of 2.95, compared to 3.17 among non-landowners. Table A.2 
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presents the distribution of landownership across information treatment groups and subsamples 

(general population vs. public officials). 

The US Energy Information Administration (2022) reports that 15 of the 99 counties in Iowa 

operate utility-scale solar projects at the time of our study. Among our respondents, 31% of the 

public officials report they have either adopted rooftop solar systems at their residences or plan to 

install solar panels in the next five years; the corresponding percentage is 26% for the general 

population. Most respondents (74%) express moderate interest in participating in a community 

solar project if one were available. 

The potential impact on land use, particularly the conversion of farmland to solar installations, 

is considered by survey respondents as a primary challenge when it comes to adopting utility-scale 

solar projects. As shown in Figure A.2b, over half of the respondents (51.5%) identify land use as 

a significant issue for their communities adopting utility-scale solar projects. Among several 

potential challenges, 35% of respondents point to the potential loss of farmland as the primary 

challenge associated with the adoption of utility-scale solar energy systems (Figure A.2d), while 

29% cite high initial investment costs, including construction costs, as the primary challenge. 

Despite land use concerns, a majority of respondents (71.5%) consider a reduced electricity bill 

for their households as an extremely important factor for their communities adopting utility-scale 

solar projects (Figure A.2a), followed by increased resilience during electricity-disrupting 

disasters (62.3%) and reduced emissions of carbon and other air pollutants (58.6%). As presented 

in Figure A.2c, 33% of respondents rate reduced electricity bills as the most significant benefit 

associated with the adoption of utility-scale solar projects within local communities, closely 

followed by reduced carbon and other air pollutant emissions (29%). These data suggest there are 

great heterogeneities in how people view the significance of different challenges and benefits of 
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utility-scale solar projects. We will examine how these heterogeneities affect the way people make 

trade-offs among different attributes of a solar project. 

4.2. Estimates of the values of different attributes 

Column 1 of Table 3 presents results in willingness-to-pay space from the conditional logit model, 

while Column 2 reports the main effects in willingness-to-pay space from the random parameter 

logit (RPL) model, based on the model in preference space as specified in Eq. (4). These estimates 

represent the marginal WTP for the attributes considered in our experiment, all else equal, and 

conditional on the development of a utility-scale solar project. WTP is estimated as monthly energy 

savings on household electricity bills, with a negative WTP indicating willingness to accept 

(WTA). The RPL results show that respondents are willing to pay $3.22 per month more in 

electricity bills for carbon emission reduction from 85% to 95% relative to coal-fired plants, to 

host the utility-scale solar project (as defined in our experiment). Moreover, respondents, on 

average, require a compensation of $4.58 per month for adopting projects on medium-quality 

farmland (with an average CSR2 score above 70 and below 85) and $20.24 per month on high-

quality farmland (with an average CSR2 score of 85 or higher) relative to low-quality farmland 

(with an average CSR2 score of 55 or lower). We do not observe a significant mean WTP for a 

one-level increase in lease payments to landowners. However, the statistically significant standard 

deviation implies substantial variation in individual valuations: some respondents strongly favor 

projects with higher lease payments to landowners, while others do not or are indifferent. The 

positive and negative preferences might be balancing each other out in the sample. Furthermore, 

the standard deviations for all project attributes are statistically significant, suggesting the 

existence of preference heterogeneity among respondents, albeit with smaller magnitudes 

compared to mean WTP coefficients.  
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The conditional logit results are largely consistent with the RPL estimates. However, our 

analysis focuses on the RPL model for several methodological reasons. First, RPL allows for 

preference heterogeneity across respondents and provides more realistic behavioral assumptions 

by relaxing the restrictive independence of irrelevant alternatives (IIA) assumption inherent in 

conditional logit. Second, the statistically significant standard deviations of the random 

coefficients indicate meaningful unobserved heterogeneity in preferences across our sample. 

Finally, the lower AIC and BIC statistics from the RPL model suggest improved model fit relative 

to the conditional logit model, providing evidence that accounting for this unobserved 

heterogeneity better captures the underlying choice patterns in our data. 

In addition to examining the main effects, we investigate interaction effects to understand how 

changes in farmland quality influence people’s marginal WTP for carbon emission reduction and 

energy savings associated with the project. These results are presented in Column 3 of Table 3. 

Our findings reveal that when a project is proposed on medium-quality farmland rather than low-

quality farmland, individuals’ valuations of carbon emission reductions and energy savings 

decrease. Specifically, when a project is proposed on medium-quality farmland instead of low-

quality farmland, respondents’ average additional WTP for a one-level increase in carbon 

reduction (from 85% to 95%) decreases by $22.87 in monthly energy savings. This suggests that 

respondents become substantially more sensitive to the use of medium-quality farmland when 

considering the carbon reduction benefits of a solar project. In other words, individuals place a 

higher value on preserving medium-quality farmland, which is manifested as a lower valuation for 

carbon benefits when better farmland is used. However, we did not observe significant interaction 

effects when comparing high- and low-quality farmland, suggesting that respondents’ valuations 

of carbon reductions and energy-saving benefits remain relatively unchanged regardless of 
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whether the projects are located on high-quality or low-quality farmland. Several explanations may 

account for this finding. First, respondents may prioritize the preservation of high-quality farmland 

to such an extent that the potential benefits of increased carbon reduction and energy savings do 

not significantly influence their preferences or their expectations for compensation when 

considering the adoption of the project. Second, while respondents value carbon reduction and 

energy savings, the level of change of these two attributes may not be substantial enough to justify 

the switch of project siting from low- to high-quality farmland. Third, respondents may feel that 

most carbon reduction potential is already met, given that only 23.5% of Iowa’s electricity 

generation came from coal in 2023 compared to about 60% from wind energy (EIA, 2023), and 

that additional reductions should not occur at the expense of high-quality farmland when viable 

options, such as wind, exist for meeting carbon reduction goals without compromising prime 

farmland. 

The standard deviations of these interaction terms are all statistically significant, indicating 

heterogeneity in how individuals value carbon emission reductions and energy savings in relation 

to farmland quality. This suggests that the valuations for carbon reductions and energy savings are 

not constant but vary depending on the quality of the farmland. For instance, respondents may 

place a higher value on carbon reduction and energy savings when the project is located on lower-

quality farmland, possibly because the opportunity cost of using such farmland for renewable 

energy projects is perceived as lower. Conversely, on higher-quality farmland, where agricultural 

productivity might be a greater concern, respondents may be less willing to sacrifice farmland for 

environmental and economic benefits, reflecting a more conservative valuation. In the following 

section, we explore the heterogeneity in preferences for project attributes among respondents. 

4.3. Exploring preference heterogeneity 
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4.3.1. Preference heterogeneity across stakeholder groups 

To explore preference heterogeneity in more detail, specifically, how preferences for project 

attributes vary across stakeholder groups, we incorporate interactions between project attributes 

and stakeholder indicators (i.e., public official indicator and landowner indicator) into Eq. (4). We 

later investigate factors driving heterogeneity in the valuations of farmland of different qualities 

across respondents, given that this study focuses on local land use issues related to utility-scale 

solar projects. 

Table 4 presents the WTP estimates across stakeholder groups, public officials vs. the general 

population, and landowners vs. non-landowners. Our findings indicate that the general population 

and non-landowners have a statistically significant WTP as measured by $4.31 and $3.49 extra in 

monthly energy costs, respectively, to achieve a 95% carbon emission reduction compared to an 

85% reduction. However, we observe no statistically significant differences in willingness to pay 

for the same carbon emission reductions between public officials and the general population, and 

between landowners and non-landowners. By contrast, our findings reveal notable differences in 

the mean valuations of land quality attributes across these stakeholder groups. Public officials and 

landowners are particularly concerned about the quality of the farmland occupied by solar projects, 

requiring statistically significantly higher compensation for adopting a 50-MW project on 375 

acres of higher-quality farmland within their communities than the compensation required by 

either the general population or non-landowners. Specifically, public officials and landowners 

require an additional compensation of $14.32 and $14.26 in monthly energy savings, respectively, 

to offset medium-quality farmland loss and an additional compensation of $33.92 and $32.47, 

respectively, to offset high-quality farmland loss, compared to low-quality farmland. For context, 

Iowa’s average annual cash rental rates in 2022 ranged from $217 per acre for low-quality land to 
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$297 per acre for high-quality land (ISU Extension 2022). Thus, these findings corroborate and 

provide further insights about the results in Table 3 that there are substantial heterogeneities in 

preferences concerning solar project attributes. 

4.3.2. Preference heterogeneity across information treatments 

To examine how preferences for project attributes are different across information treatment 

groups, we conduct regressions that incorporate interactions between project attributes and 

information treatment indicators into Eq. (4).  

Table 5 presents the results for both the general population subsample (Column 1) and the full 

sample (Column 2), and the results in the two columns are largely the same. The WTP estimates 

show respondents’ valuations of project attributes across the four information treatment groups: 

no information (control group), peer information, positive information, and negative information. 

The baseline results suggest that the WTP for additional carbon emission reductions and lease 

payments to landowners are not statistically significant for the control group. However, this group 

exhibits a statistically significant willingness to accept compensation, in terms of monthly energy 

cost savings, for proposed projects on high-quality farmland compared to low-quality farmland. 

The two columns show a similar willingness to accept compensation for siting projects on 

medium-quality farmland compared to low-quality farmland, although the WTA is statistically 

significant at the 10% confidence level for the full sample and not significant for the general 

population subsample, likely due to the loss of efficiency from the reduced sample size. 

Regarding the interaction effects with information treatments, the coefficients for the peer and 

positive information treatments are positive across all attributes, suggesting that such information 

may increase respondents’ valuations for carbon reductions and lease payments while reducing 

concern about projects on higher-quality farmland. Conversely, coefficients for the negative 
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information treatment are negative across all attributes, potentially indicating decreased valuation 

of project benefits and heightened land use concerns. However, none of these interaction effects is 

statistically significant, providing no robust evidence that our information treatments meaningfully 

alter respondents’ tradeoffs among project attributes. This lack of statistically discernible effects 

could be partly due to limited statistical power, as the inclusion of full interaction terms 

substantially increases the number of parameters to be estimated.  Alternatively, the results suggest 

that respondents’ underlying values and priorities regarding utility-scale solar attributes are deeply 

held and not easily shifted by the types of normative messaging tested in this study. 

It is important to note, however, that while information treatments do not appear to affect how 

respondents weigh the tradeoffs among project attributes, the nature of the information can still 

affect people’s overall attitudes toward utility-scale solar projects. For example, our survey data 

suggests that respondents who received positive information about solar projects expressed 

statistically significantly higher support (averaging 3.20 on a 5-point scale) compared to those who 

received negative information (averaging 3.01). 

4.3.3. Latent class analysis (LCA) 

To implement the LCA model as represented in Eq. (6), we first determine the number of classes 

to use. Based on the BIC results, we select a model with 3 classes of respondents, comprising 

46.5%, 32.9%, and 20.6% of the sample, respectively.20 The results are presented in Table A.3. 

Class 1 respondents are characterized primarily by significantly lower knowledge of utility-scale 

solar energy compared to Class 3 respondents (the reference group), without notable differences 

in landownership, rooftop solar adoption or future plans, or interest in participating in community 

solar. Class 2 respondents are more likely to be landowners and show less interest in rooftop solar 

adoption and community solar participation relative to Class 3 respondents. 
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Table A.3 illustrates distinct differences in preferences for utility-scale solar project attributes 

among the three respondent classes: Cost-Conscious Accepters (Class 1), who value energy 

savings but moderately oppose projects on higher-quality farmland; Strong Land Stewards (Class 

2), defined by the strongest opposition to projects on higher-quality farmland; and Solar 

Advocates (Class 3), who value project benefits (carbon reduction and increased lease payment to 

landowners) and are supportive of locating projects on higher-quality farmland. Compared to Class 

1 respondents, Class 2 respondents are less likely to support projects offering higher carbon 

benefits and lease payments to landowners, and less likely to support projects on medium- and 

high-quality farmland relative to low-quality farmland. This may reflect a prioritization of higher-

quality farmland over other benefits or a general resistance to utility-scale solar projects in local 

communities, resulting in negative evaluations of both higher carbon benefits and financial 

incentives to landowners. In contrast, Class 3 respondents place a higher value on carbon emission 

reductions and lease payments than Class 1 respondents when deciding which projects to support. 

Moreover, Class 3 respondents exhibit a greater willingness to adopt projects situated on higher-

quality farmland and may also prioritize the environmental and economic benefits associated with 

utility-scale solar projects, viewing higher-quality farmland as compatible with sustainable energy 

initiatives. Note that none of the classes show significant differences in the presence of county 

utility-scale solar. This could be attributed to the limited presence of utility-scale solar projects in 

Iowa during our study period. The LCA results provide evidence that landownership, respondents’ 

knowledge, and personal experiences related to solar energy are likely important drivers of the 

observed preference heterogeneity in Table 3. 

We also implement the covariate-free version of LCA, which groups classes of respondents 

simply by the observed choices (Train, 2009). This allows us to test whether distinct preferences 
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are driven by choice patterns rather than the specific covariates included. As shown in Table A.4, 

the covariate-free LCA model identifies the same three distinct classes – Cost-Conscious 

Accepters, Strong Land Stewards, and Solar Advocates – with similar preference structures and 

class shares compared to Table A.3. The high alignment between the two model specifications 

strongly supports the robustness of the identified classes, showing that the core preference 

heterogeneity likely exists independently of the individual characteristics used to explain it. In 

Appendix B, we investigate attribute non-attendance to better understand the underlying sources 

of preference heterogeneity in respondents’ decision processes. 

4.3.4. Drivers of heterogeneity in farmland valuation 

As explained in Section 3.3, we implement the ordinal logit model in Eq. (7) to provide insights 

regarding factors that drive the heterogeneities in the valuation of farmland quality, and present 

the results in Table 6. 

Results in Table 6 indicate that individuals with rooftop or community solar experience, or 

those highly interested in participating in the near future, are significantly less likely to view land 

use concern as a considerable challenge to the adoption of utility-scale solar projects within their 

communities. Specifically, those with installed rooftop solar or adoption interest are 5.5% more 

likely to view land use as “Not a challenge” and “Somewhat a challenge”. Their likelihood of 

viewing land use concern as “A significant challenge” decreases by 10.92% compared to those 

without rooftop solar installation or adoption interest. Similarly, individuals interested in 

community solar participation are 6.06% less likely to regard land use concerns as a significant 

barrier compared to those who express no interest. In contrast, respondents with family farm 

operation experience are 8.15% more likely to consider land use a significant barrier. Other 

demographic variables show no significant impact. These findings highlight the importance of 
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personal experience with respect to solar energy and farming in the heterogeneous valuation of 

farmland quality for utility-scale solar projects and can inform policies balancing solar energy 

expansion with responsible land use planning.  

4.4. Robustness checks 

We conduct the following three types of additional analyses to assess the robustness of our primary 

results in Table 3. That is, we provide analyses that take into account scale heterogeneity, 

respondents’ different uncertainty levels in their responses, protest and inattentive responses, and 

consistency in responses based on answers to different but related survey questions. 

4.4.1. Accounting for scale heterogeneity 

Our primary analysis relies on the RPL model, which assumes that the idiosyncratic error is 

independent and identically distributed extreme value. However, Louviere and Meyer (2017) argue 

that the scale of the idiosyncratic error term often differs across respondents – known as scale 

heterogeneity. To test the robustness of our results in Table 3 to this concern, we follow Fiebig et 

al. (2010), and allow the scale parameter to vary across individuals based on observed choices 

using the generalized multinomial logit (G-MNL) model. The G-MNL results are presented in 

Table A.5. The estimated significant scale parameter, , which represents the standard deviation 

of the scale factor’s distribution across respondents, indicates the presence of scale heterogeneity, 

suggesting that respondents vary in the randomness of their choices. However, the WTP estimates 

from the G-MNL model are largely consistent with those from the RPL specification as presented 

in Column 2 of Table 3. This implies that the existence of scale heterogeneity does not significantly 

affect the estimation of mean parameters, and our results are robust to the choice of model.  

We retain the RPL model as our main specification for several reasons. First, removing 
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respondents who self-report high uncertainty in their choice tasks (certainty < 3) helps mitigate the 

primary source of scale heterogeneity arising from respondent uncertainty. Second, the BIC values 

are nearly identical between the G-MNL and RPL models, indicating that the additional 

complexity of modeling scale heterogeneity does not improve model fit. Third, the RPL model 

offers greater computational simplicity and parsimony compared to the G-MNL model while 

maintaining equivalent explanatory power.  

4.4.2. Addressing respondent uncertainty in choice decisions  

In addition to excluding responses with high levels of stated uncertainty (certainty level = 1 or 2 

on a 5-point scale in the DCE tasks), we use two other different approaches to account for 

respondents’ uncertainty in their choices. First, to examine whether there is a significant difference 

between the estimates with and without the inclusion of highly uncertain responses, we estimate 

the same model specification used in Eq. (4), but without excluding highly uncertain responses in 

the DCE choice scenarios. Second, we perform a regression using only observations from 

respondents who indicate a high level of uncertainty (certainty level = 1 or 2), accounting for 

12.5% of observations in our dataset. These results are reported in Columns 1 and 2 of Table A.6. 

The estimates in Column 1 of Table A.6 are consistent with our main results in Table 3, though 

there are some differences in the magnitudes of the mean WTP/WTA estimates. However, the 

model that excludes responses with a high level of uncertainty yields less negative log-likelihood 

and lower AIC and BIC values than the model retaining these responses, indicating improved 

model fit and more accurate estimates. As suggested in Column 2 of Table A.6, none of the WTP 

estimates for solar attributes are statistically significant, with large standard errors for respondents 

who indicated high uncertainty in choice scenarios. This finding is consistent with previous studies 

(e.g., Ku and Wu, 2018; Vossler et al., 2012), suggesting that responses from highly uncertain 
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individuals are unreliable for estimating true preferences. 

4.4.3. Accounting for potentially unreliable responses 

As another robustness check, we further account for potentially unreliable responses in the choice 

experiment and survey. First, protest responses in the choice experiment can lead to inconsistencies 

in utility estimates (Lancsar and Louviere, 2006). Therefore, we estimate the model specified in 

Column 2 of Table 3, which is based on Eq. (4), but exclude respondents who consistently select 

either Project A or Project B across all six choice scenarios. Second, we apply an additional 

screening criterion by removing respondents who complete the survey in less than ten minutes. 

Rapid survey completion times may indicate a lack of serious consideration or engagement with 

choice scenarios and the trade-offs presented (Uggeldahl et al., 2016). The results are presented in 

Table A.7, and we find that the estimates are consistent with our main results presented in Table 

3, implying that our estimates are not significantly affected by the two potential issues. 

4.4.4. Assess the consistency of respondents’ stated preferences 

We conduct a sub-sample analysis to assess the internal consistency of respondents’ stated 

preferences and mitigate the concerns of hypothetical bias. Sub-sample construction was based on 

respondents’ ratings of the perceived benefits and challenges associated with utility-scale solar 

energy systems in their local communities. The four sub-samples comprised respondents who rated 

each of the following as “very important” or “extremely important”: carbon emission reductions, 

lease payments to landowners, household energy savings on electricity bills, or concerns about 

land use (loss of farmland). Table A.8 shows the results in preference space. Across the sub-

samples, respondents exhibit a higher valuation for the attribute they deemed very or extremely 

important in their community contexts. For instance, those who prioritized carbon reductions, lease 
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payments, energy savings, or farmland impacts valued the corresponding attribute the most within 

their respective groups. These findings suggest a high level of consistency between respondents’ 

stated preferences in the choice scenario and their self-reported importance ratings of the key 

project attributes. 

4.4.5. Accounting for survey distribution mode 

As mentioned in Section 2.3, mixed distribution modes (online Qualtrics survey and mail-based 

survey) were employed to enhance the response rate from public officials, resulting in 57 physical 

copy responses from public officials with the rest coming from the online mode. Among these 57 

physical copy responses, 28 are also landowners. To address concerns about the potential mode 

effects, we re-estimate models shown in Column 2 of Table 3, Columns 1 and 2 of Table 4, 

excluding these physical copy responses. The results, reported in Table A.9, are largely similar in 

terms of sign and significance for most coefficients, implying no systematic difference in 

preferences for project attributes based on survey distribution mode.21  

5. Conclusion and discussion 

Solar energy systems have significant potential for reducing greenhouse gas emissions and 

advancing a clean energy future, yet they have also become a considerable source of concern in 

some communities due to localized impacts. Despite the advantages of utility-scale solar 

photovoltaic energy, quantitative studies on how individuals perceive and make trade-offs among 

localized economic, environmental, and agricultural land-use impacts are still limited. 

Understanding these trade-offs and preferences for local solar projects is crucial for informing 

policies and practices that foster utility-scale solar and renewable energy development. 

This study investigates how individuals perceive and make trade-offs associated with utility-
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scale solar energy development in their communities. Our results suggest that individuals are 

generally more supportive of utility-scale solar projects that can deliver greater carbon emission 

reductions compared to coal, lead to increased household energy savings, and are sited on less 

productive farmland. However, significant heterogeneities exist in valuations and trade-offs 

between land use and other attributes across stakeholder groups. For instance, our findings show 

that while the general population and non-landowners show greater willingness to accept solar 

projects on agricultural land in exchange for enhanced carbon emission reductions, public officials 

and landowners exhibit more nuanced considerations and generally require higher compensations 

to site utility-scale solar projects on good-quality farmland. Other factors such as knowledge level 

and personal experience with solar energy are also shown to be key potential factors contributing 

to the preference heterogeneity.  

The substantial heterogeneities in land use preferences suggest complex social and economic 

negotiations inherent in utility-scale solar energy projects. In order to design policies that are 

acceptable for local communities, policymakers must recognize that stakeholder groups do not 

uniformly value environmental benefits, economics, or land use trade-offs. In addition, our 

targeted information disseminations, whether peer regulations, positive impacts, or potential 

challenges, do not statistically significantly alter community valuations of the tradeoffs of solar 

project attributes, in particular, land use related trade-offs. This suggests that people’s preferences 

toward solar project attributes are relatively fixed, likely shaped by prior knowledge, personal 

values, or deeply held beliefs about energy and land use priorities. However, the nature of 

information can influence people’s support levels for their communities hosting solar projects. 

Thus, the effects of information can be nuanced in terms of how it affects people’s views of the 

inherent tradeoffs or their overall attitudes towards solar. These findings in our study point to the 
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need for more comprehensive engagement strategies that go beyond information sharing to include 

participatory planning processes, stakeholder dialogue, and addressing underlying concerns about 

project impacts.  

Our study is based on data directly collected from the stakeholder groups and provides policy 

relevant insights that are otherwise not available. However, we would like to outline a couple of 

caveats concerning the general methodology of our study. First, our choice experiment design 

without an opt-out option, which is intended to promote thoughtful choices by respondents, may 

overstate overall support for solar projects (Johnston et al., 2017; Lancsar and Louviere, 2008; 

Veldwijk et al., 2014) and limit the scope of our analysis. In particular, our estimates of willingness 

to pay (or accept) reflect conditional preferences for solar attributes, assuming a project will 

proceed, rather than unconditional support for solar development. Second, we note that our study 

is based on data collected in the U.S. state of Iowa, and thus, applying our findings beyond this 

sample and region requires consideration of local context and suitability. Nonetheless, we believe 

our insights have broader relevance—particularly given that over 63% of U.S. solar projects are 

located on agricultural land. While our absolute willingness-to-pay estimates are most directly 

applicable to U.S. Midwest, our methodological framework and findings on the relative 

importance of land quality can inform solar siting policies more broadly. For instance, our 

approach can be readily adapted to other regions by incorporating locally appropriate land quality 

indicators (e.g., substituting Iowa’s CSR2 with region-specific measures). 
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Figures and tables 

Figure 1. Regional Distribution of Survey Responses from Public Officials and the General 

Population 

 

Note: The top letter ‘P’ represents public officials, and ‘G’ represents the general population. There were 4 responses 

from public officials that did not report county information, so they are not included in the counts on this map. The 

division of regions followed the classification used by the Iowa League of Cities. 

 

 

 

 

Table 1: Attributes and Levels in the Discrete Choice Experiment 

Attributes Levels 

Expected carbon emissions reduction relative to coal-fired power plants 85%; 95% 

 2 times prevailing cash rent 

Expected annual lease payment to landowners 4 times prevailing cash rent 

 6 times prevailing cash rent 

Expected savings on the monthly electricity bill for your household $5; $25; $40 

 Low (CSR2=55) 

Land quality of the occupied farmland Medium (CSR2=70) 

 High (CSR2=85) 

Note: Corn suitability rating 2 (CSR2) is an index designed to measure soil productivity based on soil profile, slope 

characteristics, and weather conditions. The index is scaled from 5 for the least productive soils to 100 for the most 

productive. 
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Table 2: Sample Statistics and Demographics (N = 868) 

Variable Definition Description No. of Obs (%) 

Stakeholder Indicator of the respondent’s stakeholder 

group. 

Public official 182 (20.97%) 

 General population 686 (79.03%) 

 Non-landowner 724 (83.60%) 

 Landowner 142 (16.40%) 

Information treatment Indicator of the version of information 

provided to the respondent. 

No information 221 (25.46%) 

 Peer info treatment 230 (26.50%) 

 Positive info treatment 213 (24.54%) 

 Negative info treatment 204 (23.50%) 

Support Degree of support for utility-scale solar 

projects in local communities. 

1=Not at all 70 (8.06%) 

 2=Slightly 124 (14.29%) 

 3=Moderately 382 (44.01%) 

 4=Very 204 (23.50%) 

 5=Extremely 88 (10.14%) 

Land_use_challenge The degree to which the respondent rates 

land use as a challenge for hosting utility-

scale solar projects within their community. 

1=Not a challenge 123 (14.22%) 

 2=Somewhat a challenge 297 (34.34%) 

 3=A significant challenge 445 (51.45%) 

Knowledge_utility_solar Self-reported knowledge level regarding 

utility-scale solar energy. 

1=Low 692 (79.91%) 

 2=Medium 162 (18.71%) 

 3=High 12 (1.39%) 

County_utility_solar Whether there is a utility-scale solar project 

in the county where the respondent resides. 

0=No 724 (83.41%) 

 1=Yes 144 (16.59%) 

Rooftop_adopt_plan Whether the respondent has installed 

rooftop solar panels or plans to adopt them 

in the next five years. 

0=No 634 (73.04%) 

 1=Yes 234 (26.96%) 

Community_part_int Degree of interest the respondent has in 

participating in community solar projects, 

if available. 

1=Not at all interested 223 (25.69%) 

 2=Somewhat interested 498 (57.37%) 

 3=Very interested 147 (16.94%) 

Municipal_cooperatives Whether the respondents' electricity 

supplier is a municipal utility or a 

cooperative.  

0=No 511 (58.87%) 

 1=Yes 357 (41.13%) 

Gender  1=Male 439 (50.58%) 

  2=Female 426 (49.08%) 

Age  <=24 46 (6.71%) 

  25-34 110 (16.03%) 

  35-44 152 (22.16%) 

  45-54 128 (18.66%) 

  55-64 115 (16.76%) 

  65+ 135 (19.68%) 

Education  12th grade or less/no diploma 17 (1.96%) 

  High school diploma or GED 131 (15.13%) 

 

 Some college, or Associate's 

degree 315 (36.37%) 

  Bachelor's degree 276 (31.87%) 

  Graduate or Professional degree 127 (14.67%) 

Political affiliation  1=Democrat 210 (24.25%) 

  2=Republican 304 (35.10%) 

  3=Independent 313 (36.14%) 

  4=Others 39 (4.50%) 

Household income  $0-$30,000 157 (18.17%) 

  $31,000-$60,000 191 (22.11%) 

  $61,000-$90,000 185 (21.41%) 

  $91,000-$120,000 151 (17.48%) 

  $120,000+ 180 (20.83%) 

Farm operation Whether the respondent’s family operates a 

farm. 

0=No 728 (83.97%) 

 1=Yes 139 (16.03%) 
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Table 3: Estimates of Attribute Coefficients in Willingness-to-Pay Space 

 Conditional 

Logit 

Random Parameter  

Logit 

Variable (1) (2) (3) 

Mean parameters    

Carbon emission reduction 95% 5.3104*** 3.2164** 14.9460*** 

 (1.1787) (1.3396) (3.9124) 

Lease payment to landowners 0.5120 0.2948 1.5509*** 

 (0.4246) (0.4325) (0.4372) 

Medium quality farmland -6.4551*** -4.5762*** 14.4865*** 

 (1.5186) (1.4508) (4.0322) 

High quality farmland -23.9987*** -20.2377*** -22.4219** 

 (2.2136) (2.5059) (9.1070) 

Medium quality farmland × Carbon emission reduction 95%   -22.8724*** 

   (6.3867) 

Medium quality farmland × Energy saving   -0.3640*** 

   (0.0781) 

High quality farmland × Carbon emission reduction 95%   -0.6537 

   (7.7114) 

High quality farmland × Energy saving   0.0813 

   (0.2084) 

Standard deviation parameters    

Carbon emission reduction 95%  1.4266*** 4.6335*** 

  (0.1236) (0.5183) 

Lease payment to landowners  0.4378*** 0.5196*** 

  (0.0378) (0.0566) 

Medium quality farmland  1.5572*** 4.5349*** 

  (0.1391) (0.5264) 

High quality farmland  3.3019*** 8.1456*** 

  (0.3282) (1.1050) 

Medium quality farmland × Carbon emission reduction 95%   7.0948*** 

   (0.8338) 

Medium quality farmland × Energy saving   0.1024*** 

   (0.0110) 

High quality farmland × Carbon emission reduction 95%   7.7441*** 

   (0.8421) 

High quality farmland × Energy saving   0.2031*** 

   (0.0228) 

Log likelihood -2,956 -2,661 -2,641 

AIC 5922.158 5342.334 5317.445 

BIC 5957.720 5413.457 5445.466 

Certainty level  3 Yes Yes Yes 

Number of respondents 816 816 816 

Observations 9066 9066 9066 

Note: Robust standard errors clustered at the individual level in parentheses, * p < 0.1, ** p < 0.05, ***   p < 0.01. 
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Table 4: Random Parameter Logit Models in Willingness-to-Pay Space: Estimates Across 

Stakeholder Groups 

Variable (1) (2) 

Mean parameters   

Carbon emission reduction 95% 4.3135*** 3.4851** 

 (1.4647) (1.4043) 

Lease payment to landowners 0.1080 0.2766 

 (0.4840) (0.4584) 

Medium quality farmland -2.1616 -3.1220** 

 (1.6117) (1.5352) 

High quality farmland -14.8066*** -17.1263*** 

 (2.6432) (2.4547) 

Carbon emission reduction 95% × Public official -5.2905  

 (3.4394)  

Lease payment to landowners × Public official 1.1496  

 (1.0969)  

Medium quality farmland × Public official -14.3176***  

 (4.1549)  

High quality farmland × Public official -33.9172***  

 (8.8950)  

Carbon emission reduction 95% × Landowner  -0.8582 

  (4.3585) 

Lease payment to landowners × Landowner  0.6190 

  (1.4781) 

Medium quality farmland × Landowner  -14.2596** 

  (6.1472) 

High quality farmland × Landowner  -32.4714** 

  (13.4699) 

Standard deviation parameters   

Carbon emission reduction 95% 1.6123*** 1.5127*** 

 (0.1479) (0.1357) 

Lease payment to landowners 0.4859*** 0.4636*** 

 (0.0445) (0.0416) 

Medium quality farmland 1.6604*** 1.6185*** 

 (0.1514) (0.1453) 

High quality farmland 3.2295*** 3.2252*** 

 (0.3175) (0.3155) 

Log likelihood -2,634 -2,649 

AIC 5298.574 5328.306 

BIC 5405.258 5434.990 

Certainty level  3 Yes Yes 

Number of respondents 816 816 

Observations 9066 9066 

Note: Robust standard errors clustered at the individual level in parentheses, * p < 0.1, ** p < 0.05, ***   p < 0.01. 
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Table 5: Random Parameter Logit Models in Willingness-to-Pay Space: Estimates Across 

Information Treatment Groups 

 General population Full sample 

Variable (1) (2) 

Mean parameters   

Carbon emission reduction 95% 3.8206 1.5805 

 (2.3260) (2.3633) 

Lease payment to landowners -0.3137 0.3081 

 (0.8003) (0.7924) 

Medium quality farmland -3.8120 -4.8522* 

 (2.6990) (2.5564) 

High quality farmland -14.5888*** -18.0799*** 

 (4.5837) (4.7110) 

Carbon emission reduction 95% × Peer information 0.3695 2.1535 

 (3.6826) (3.4831) 

Lease payment to landowners × Peer information 0.8314 -0.0100 

 (1.1918) (1.1201) 

Medium quality farmland × Peer information 4.1024 3.5936 

 (4.1405) (3.7538) 

High quality farmland × Peer information 0.7338 -0.1295 

 (6.5422) (6.5357) 

Carbon emission reduction 95% × Positive information 4.7963 5.3651 

 (3.7298) (3.4235) 

Lease payment to landowners × Positive information 1.1624 0.4219 

 (1.3257) (1.1920) 

Medium quality farmland × Positive information 6.5055 1.2127 

 (4.7313) (4.1418) 

High quality farmland × Positive information 4.8835 -0.3804 

 (7.3606) (6.8955) 

Carbon emission reduction 95% × Negative information -2.6316 -1.0612 

 (3.9411) (3.9700) 

Lease payment to landowners × Negative information -0.0795 -0.5625 

 (1.3979) (1.3346) 

Medium quality farmland × Negative information -4.2683 -5.0122 

 (4.2969) (4.1098) 

High quality farmland × Negative information -7.8449 -11.1071 

 (7.3942) (7.8107) 

Standard deviation parameters   

Carbon emission reduction 95% 2.5017*** 2.4363*** 

 (0.3448) (0.3436) 

Lease payment to landowners 0.7886*** 0.8050*** 

 (0.1112) (0.1142) 

Medium quality farmland 2.8542*** 2.7603*** 

 (0.3936) (0.4037) 

High quality farmland 5.3931*** 5.5936*** 

 (0.7840) (0.9120) 

Log likelihood -2,138 -2,652 

AIC 4322.704 5355.362 

BIC 4495.081 5533.169 

Certainty level  3 Yes Yes 

Number of respondents 654 816 

Observations 7296 9066 

Note: Robust standard errors clustered at the individual level in parentheses, * p < 0.1, ** p < 0.05, ***   p < 0.01. 
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Table 6: Heterogeneity Analysis: Marginal Effects of Factors Influencing the Ranking of Land 

Use Challenges 

Variable Not a challenge Somewhat a challenge A significant challenge 

County_utility_solar 0.0208 0.0208 -0.0417 

 (0.0211) (0.0212) (0.0423) 

Rooftop_adopt_plan 0.0546*** 0.0546*** -0.1092*** 

 (0.0192) (0.0189) (0.0374) 

Community_part_int 0.0303** 0.0303** -0.0606** 

 (0.0133) (0.0130) (0.0259) 

Municipal_cooperatives 0.0031 0.0031 -0.0062 

 (0.0164) (0.0164) (0.0328) 

Gender = Female (baseline: male) 0.0011 0.0011 -0.0022 

 (0.0167) (0.0168) (0.0335) 

Age -0.0003 -0.0003 0.0005 

 (0.0006) (0.0006) (0.0011) 

Education -0.0135 -0.0135 0.0271 

 (0.0088) (0.0087) (0.0174) 

Baseline: Democrat    

Political affiliation = Republican -0.0293 -0.0282 0.0575 

 (0.0226) (0.0215) (0.0438) 

Political affiliation = Independent -0.0210 -0.0193 0.0404 

 (0.0221) (0.0198) (0.0417) 

Political affiliation = Others -0.0345 -0.0342 0.0687 

 (0.0445) (0.0507) (0.0950) 

Household income -0.0102 -0.0102 0.0203 

 (0.0066) (0.0065) (0.0131) 

Farm operation -0.0407* -0.0407** 0.0815** 

 (0.0212) (0.0202) (0.0411) 

Log likelihood -826   

AIC 1679.355   

BIC 1745.903   

Observations 857   

Note: Robust standard errors in parentheses, * p < 0.1, ** p < 0.05, ***   p < 0.01. 
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Footnotes 

 
1 These professionals work directly with rural communities and have extensive field experience 

with renewable energy project implementation and community engagement in Iowa. Their 

expertise was invaluable in ensuring our attributes reflected real-world concerns and decision-

making factors relevant to local communities. Our attribute selection process was iterative. We 

initially proposed a broader set of potential attributes, including tax revenue to local government 

and job creation opportunities, among others. Through several rounds of discussion with these 

extension specialists and survey methodology experts, we refined our selection based on several 

criteria: 1) relevance to actual community decision-making processes, 2) policy relevance, 3) 

measurability and credibility to survey respondents, and 4) experimental design constraints. After 

these extensive consultations, we ultimately focused on the four attributes presented in our study 

as they best captured the primary dimensions of community concern while maintaining 

experimental feasibility and respondent comprehension. 

 
2 According to estimates by Nugent and Sovacool (2014) and Mehedi et al. (2022), utility-scale 

solar energy systems produce life-cycle greenhouse gas (GHG) emissions ranging from 98.3 to 

149.3 g CO2 eq/kWh, with a mean value of 123.8 g CO2 eq/kWh. In contrast, life-cycle GHG 

emissions from coal-fired power plants range from 0.97 to 1.69 kg CO2 eq/kWh (Steinmann et al., 

2014). Thus, we calculate the lower bound of the expected carbon emission reduction relative to 

coal-fired power plants as 85% and the upper bound as 95%. 

 
3 The annual lease payment to landowners for installing utility-scale solar in Iowa ranged from 

$600 to $1,100 per acre (Iowa Farmer Today, 2021; Iowa Solar Energy Trade Association, 2020), 

approximately 2 to 4 times the average cropland cash rent ($256/acre) paid to Iowa landlords in 

2022, as reported by ISU Extension (2022). We established three levels to accommodate variations 

in per-acre annual cropland cash rent and lease payments for installing utility-scale solar in Iowa. 

 
4 Based on data from the ‘2022 Average Monthly Bill – residential’ reported by the Energy 

Information Administration (EIA, 2022), Iowa households had an average monthly electricity 

consumption of 888 kWh and a bill of $110. The savings on the levelized cost of energy by utility-

scale solar photovoltaic were estimated to be between $0.004 to $0.046 per kWh compared to a 

gas combined cycle, which was the least-cost fossil fuel source (Lazard, 2020). This suggests an 

expected saving on Iowa household electricity bills ranging from $3.6 to $41 when transitioning 

to utility-scale solar. We construct three levels at $5, $25, and $40, representing approximately 

5%, 23%, and 36% of the average monthly electricity bill for a household, respectively. 

 
5 Corn suitability rating 2 is an index designed to measure soil productivity based on soil profile, 

slope characteristics, and weather conditions. The index is scaled from 5 for the least productive 

soils to 100 for the most productive (Woli et al., 2014). According to the Iowa State University 

Land Value Survey (Zhang, 2022), the estimated average CSR2 for low-, medium-, and high-

quality land in Iowa is 56, 70, and 83, respectively. We made slight adjustments to these numbers 

in the choice experiment. 

 
6 The D-optimal design employed in this study focuses on main effects and does not explicitly 

account for interaction effects. For the purposes of this study, we prioritized the main effects to 
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maintain a manageable design size and interpretability. 

 
7 We chose to study a 50 MW solar project because it is considered a medium-sized, utility-scale 

project. A project of this size is not too large, which may help gather more diverse opinions 

regarding its land use impacts from respondents compared to an extremely large or small project. 

 
8 Our choice experiment design did not incorporate explicit payment consequentiality questions. 

However, our focus was primarily on establishing policy consequentiality through informing 

respondents about how their responses would inform extension and outreach programs, which we 

believed would be the most relevant form of consequentiality for this particular research context. 

In addition, respondents’ choices were directly linked to specific savings on monthly electricity 

bills, grounding choices with realistic financial implications. 

 
9 More details can be found at https://www.dynata.com. 

 
10  We received a total of 1187 attempts for the online survey. Among these attempts, 501 

participants failed the attention-checking questions and were automatically excluded from the 

survey. 

 
11 The assumption states that the relative odds of choosing between any two alternatives are 

independent of the presence or characteristics of other alternatives in the choice set. 

 
12  The standard conditional logit model has been employed in many studies, which assumes 

homogeneous preferences across respondents, implying constant taste parameters. However, 

previous studies have shown that heterogeneity is a defining feature of non-market environmental 

valuations (Phaneuf, 2013) and the conditional logit model may misspecify the taste distribution 

and inaccurately represent the value of attributes appealing to specific population subsets (Phaneuf, 

2013; Train, 2009). 

 
13 In our analysis, energy savings and lease payments are treated as continuous variables, while 

farmland quality is modeled using dummy variables. This distinction reflects both the nature of 

the attributes and our research goals. Energy savings and lease payments, being monetary 

attributes, are assumed to have a linear relationship with utility, allowing for a straightforward 

interpretation of marginal effects. In contrast, farmland quality, a central focus of our research, is 

coded as a dummy variable to account for possible non-linear effects, enabling us to capture how 

respondents’ trade-offs might differ based on the project’s location on farmland of varying quality. 

This approach offers a more detailed understanding of preferences across different farmland 

quality levels. 

 
14  Carson and Czajkowski (2019) highlight that the Delta method can produce unreliable 

confidence intervals when the denominator (the negative of the cost parameter) is not sufficiently 

far from zero in a statistical sense. As they note, the Delta method is considered adequate only 

when the t-statistic on the denominator exceeds 8.75 - a threshold that is not typically met in some 

applied economic works. The t-statistics for our cost parameter denominators are greater than 10, 

which are substantially greater than the threshold of 8.75 often cited in the literature (Carson and 

Czajkowski, 2019; Finney, 1971; Hirschberg and Lye, 2010). These values indicate that our cost 

https://www.dynata.com/
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parameters are highly statistically significant and sufficiently far from zero to ensure reliable Delta 

method approximation. 

 
15 In practice, the proportional odds (PO) assumption required by the standard ordered logit model 

might be violated, necessitating the use of a generalized ordinal logit model, such as the partial 

proportional odds model (Greene and Hensher, 2010; Williams, 2006). To address concerns 

regarding potential violations of the PO assumption, we conducted the Brant test (Brant, 1990) to 

determine whether the PO assumption holds for each individual explanatory variable as shown in 

Eq. (6). The results of the Brant test indicate that the PO assumption holds for all explanatory 

variables in our study. Therefore, we utilized the standard ordered logit model (PO model) in this 

analysis. 

 
16 More details on population, age, household income, and education attainment estimates for the 

Iowa population can be found on the U.S. Census Bureau’s QuickFacts for Iowa at 

https://www.census.gov/quickfacts/fact/table/IA/. 

 
17 The U.S. Census Bureau estimates that around 22.8% of the Iowa population in 2023 was under 

18 years old, with the median age of the adult population (18+) falling in the range of 40-49 years. 

 
18  According to Iowa voter registration data updated in June 2025, which can be found at 

https://independentvoterproject.org/voter-stats/ia. 

 
19 The p-value for the two-sided t-test for the mean difference in the level of support between 

landowners and non-landowners is 0.0256, indicating the rejection of null hypothesis of no 

significant difference between these two groups at a 5% significance level. 

 
20 We estimate the Bayesian Information Criterion (BIC) for models with 2 to 10 classes, as BIC 

is widely used in latent class analysis for model selection due to its consistency property—it will 

asymptotically select the true model when the true model is among the candidate models 

considered. BIC achieves this through a stronger penalty for model complexity compared to other 

information criteria such as the Akaike Information Criterion (AIC) (Vrieze, 2012). The BIC 

decreases substantially from 2 classes (5538) to 3 classes (5437) but increases to 5467 for 4 classes 

and 5508 for 5 classes, indicating that the 3-class model provides the optimal balance between 

model fit and parsimony. Additionally, the model encountered convergence issues when 

specifying 6 or more classes, likely due to model over-parameterization. 

 
21  When 57 physical copy responses are excluded, the estimates for the interaction terms of 

attributes and the public official indicator are only significant at 5% confidence level, and 

landowners’ valuations on medium-quality farmland for solar projects are not statistically 

significantly different from those of non-landowners, likely reflecting the loss of efficiency from 

a reduced sample size. 

https://www.census.gov/quickfacts/fact/table/IA/
https://independentvoterproject.org/voter-stats/ia
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